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Abstract

The aim of this AASERT supplement was to investigate the use of Bayesian
networks to capture structural regularities in domains for pattern recognition.
We focused on plans as a particular form of pattern, where the recognition
elements are actions and their effects. Plans are distinguished by the fact that
they are generated by agents to serve some objectives, and this causal
relationship can be exploited in developing specific models to support the plan
recognition task.

This AASERT supplement augmented our AFOSR project that covered more
generally the scope of dynamic decision making under uncertainty. It primarily
supported the graduate studies of David Pynadath, who successfully completed
his dissertation (Pynadath 1999) in February 1999.

The specific results of this project comprised several advances in plan recognition
under uncertainty, most notably: (1) a general Bayesian framework for plan
recognition, (2) a generalization of techniques for probabilistic context-free
grammars based on encoding the space of parse trees in Bayesian networks, (3) a
new representation, probabilistic state-dependent grammars, exploiting the
advantages of state-based and grammatical approaches, and (4) demonstrations
of the new techniques in simplified versions of the application domains of
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1. Overview

The aim of this project was to identify general principles and develop concrete
techniques for plan recognition under uncertainty. We exploited two threads of
prior work bearing on this problem. First, we extended and generalized
grammatical approaches, such as those based on probabilistic context-free
grammars. Grammatical representations capture generative structure in
sequential patterns (such as plans), are well understood theoretically, and have a
productive history of use in recognition, particularly of language. Second, we
employed Bayesian networks for general representation of uncertain
relationships, and particularly for capturing dependence structure in state
representation. The synthesis of these two threads form the major theme for the
line of work pursued in this project.

2. Pattern and Plan Recognition

The problem of plan recognition is to induce the plan of action driving an agent’s
behavior, based on partial observation of its behavior up to the current time.
Deriving the underlying plan can be useful for many purposes—predicting the-
agent's future behavior, interpreting its past behavior, or generating actions
designed to influence the plan itself. Researchers in Al have studied plan
recognition for several kinds of tasks, including discourse analysis (Grosz and
Sidner 1990), collaborative planning (Huber and Durfee 1993), and adversarial
planning (Azarewicz et al. 1989). These works have employed a great variety of
reasoning techniques, operating on similarly various plan representations and
adopting varied assurnptions about observability.

The common theme underlying these diverse motivations and approaches is that
the object to be induced is a plan, and that this plan is the cause of observed
behavior. If there is anything special about the task of plan recognition as
opposed to recognition in general, it must be due to special properties of plans:
how they are constituted, and how they cause the behavior we observe and wish
to predict, interpret, and influence.

We can distinguish plan recognition from uncertain reasoning in general by
noting two special features of plans. First, plans are structured linguistic objects.
Plan languages considered in Al research range from simple sequences of action
tokens to general-purpose programming languages. In either case, the
recognizer can and should exploit the structure of plans in inducing them from
partial observations of the actions comprising the plan. Another way to say this
is that plans are descriptions of action patterns, and therefore any general
pattern-recognition technique is automatically a plan recognition technique for
the class of plans corresponding to the class of patterns associated with the given
technique.

The second special feature of plans is that they are rational constructions. They are
* synthesized by a rational agent with some beliefs, preferences, and capabilities,
that is, a mental state. Knowing the agent’s mental state and its rationality




properties strongly constrains the possible plans it will construct. (The degree of
constraint depends on the power of the rationality theory we adopt.) The
rational origin of plans is what distinguishes plan recognition from pattern
recognition. If the observations available include evidence bearing on the beliefs,
preferences, and capabilities of the agent, then the recognizer should combine
this with evidence from the observed actions in reasoning about the entire plan.

Our first step in this project was to elucidate (Pynadath and Wellman 1995) a
general Bayesian framework for plan recognition. Our basic approach is similar
to that of Charniak and Goldman (Charniak and Goldman 1993), elaborating and
departing in some respects, less well-developed in others. We describe the high-
level idea below; for a more complete description and some specific
developments of the technique see the cited papers.

Our framework is Bayesian in that we start from a causal theory of how the
agent’s mental state causes its plan and executing its plan causes activity, and
reason from observed effects to underlying causes. Our recognizer has uncertain
a priori knowledge about the agent’s mental state, the world state, and the
world’s dynamics, which can be summarized (at least in principle) by a
probability distribution. It then makes partial observations about the world, and
uses this evidence to induce properties of the agent and its plan.

We begin with a model of the planning agent operating in the world. As it begins
planning, the agent has a certain mental state, consisting of its preferences (e.g.,
goals), beliefs (e.g., about the state of its environment), and capabilities (e.g.,
available actions). We assume the actual planning process to be some rational
procedure for generating the plan that will best satisfy the agent's preferences
based on its beliefs, subject to its capabilities. This plan then determines (perhaps
with some uncertainty) the actions taken by the agent in the world.

Once we have accounted for the agent’s plan-generation process, we need to
consider the effects of the plan’s execution. In many plan-recognition domains,
the external observer finds the agent’s actions inaccessible. In such cases, the
recognizer observes actions only indirectly, via their effects on the world (which
themselves are typically only partially observable). These restricted observations
then form the basis of inference.

Thus, observations of the state of the world provide two types of evidence about
the plan. First, the world influences the agent’s initial mental state, which
provides the context for plan generation. Second, changes in the world state
reflect the effects of the agent’s actions, which result from executing its plan.

3. Bayesian Networks for Plan Recognition

To perform plan recognition tasks, we generate a Bayesian network
representing the causal planning model and use it to support evidential
reasoning from observations to plan hypotheses. The structure of the Bayesian
network is based on the framework depicted in Figure 1. That diagram can itself
be viewed as a Bayesian network, albeit with rather broad random variables. To
make this operational, we replace each component of the model with a




subnetwork that captures intermediate structure for the particular problem. The
limited connections among the subnetworks reflect the dependency structure of

our generic planning model.

Figure 1: Bayesian plan recognition framework.

The framework as described above is of course very general. We have explored
particular instances of the approach, specifically looking at the issue of modeling
context in the domain of traffic monitoring (Pynadath and Wellman 1995). In
subsequent work, we investigated more deeply the problem of modeling the
planning process. In doing so, we need to adopt particular assumptions about
the plans generated, and determine an effective recognition strategy.

3.1 Probabilistic Context-Free Grammars

Our approach has been to treat plan generation as a structured stochastic
process, and recognition as the task of answering queries about events in the
generation of particular observations. Our first deep study adopted the
generative model of probabilistic context-free grammars (PCFGs), a well-studied
and commonly applied model for pattern recognition (Charniak 1993; Wetherell
1980). Interpreting a string of observations generated from a grammar is known
as parsing, and the general recognition problem can be cast in terms of queries
about the parse. For PCFGs, efficient algorithms have been developed for
several useful types of queries (i.e., calculating the probability of a given string,
or finding the most likely parse). However, for other queries potentially useful in
plan recognition, only brute-force enumeration is available.

To extend this approach, we have shown (Pynadath and Wellman 1996;
Pynadath and Wellman 1998) how to construct a Bayesian network to represent
the distribution of parse trees induced by a given PCFG. The network structure
mirrors that of the chart in a standard parser, and is generated using a similar
dynamic-programming approach. By augmentations of the network, we can




relax the context-free restriction of the grammar in a controlled way, admitting
important context-sensitivities without invalidating the inferences drawn by the

recognizer.

This method generalizes the class of queries that can be answered in several
ways:

(1) allowing missing tokens in a sentence or sentence fragment,

(2) supporting queries about intermediate structure, such as the presence of
particular nonterminals, and

(3) flexible conditioning on a variety of types of evidence.

We direct the reader to our published work for discussion of the technical details
of our algorithm. In these documents, we present an algorithm for constructing
Bayesian networks from PCFGs, and show how queries or patterns of queries
on the network correspond to interesting queries on PCFGs.

3.2 Air Force Plan Recognition Application

The generalized pattern-recognition procedure is potentially applicable to a wide
range of Air Force problems involving interpreting uncertain or incomplete
observations. One example comprises problems of plan recognition, where the
aim is to interpret or predict the actions of an observed agent (friend or foe),
based on uncertain observations of its action thus far.

One of the more common representations for planning structures used in plan-
recognition research is an action decomposition hierarchy, sometimes called an
event tree (Kautz and Allen 1986). Event trees and other variants of hierarchies
map easily to context-free grammars, and indeed the parsing approach to
recognition has previously been proposed (for the deterministic case) by Vilain
(1990). By extending the event-tree model to include probabilities, we provide a
basis for distinguishing among equally possible but unequally plausible
explanations of the observations. As Charniak and Goldman (1993) (among
others) have argued, this is a critical requirement for any useful plan recognition
algorithm.

In air-combat scenarios, for example, we can model the behavior of a fighter
plane to allow tracking and prediction of its actions. The probabilistic event tree
could include information about possible specializations of its general mission
(e.g. fly to target, intercept enemy plane), as well as decompositions of plans into
subplans (e.g. employ weapons, evade, chase) or observable actions (e.g. start
turning, stop turning, maintain current heading). An example event tree for an
air-to-air combat scenario (borrowed from Tambe and Rosenbloom (1995)) is
presented in Figure 2.




Top-Level Plan | Mission1, Mission2,...
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Figure 2: An example event tree from air combat domain.

We can then translate this event tree representation into a probabilistic grammar
whose rules correspond to the plan specializations and decompositions. The
algorithm mentioned above can use this grammar to generate a Bayesian
network corresponding to the probability distribution over the possible
behavior of the tracked plane. This network would support a wide variety of
useful queries, using the traditional methods of evidence propagation to
compute the relevant probabilities. In the air-combat example, a pilot may wish
to determine whether a nearby enemy plane is about to launch a missile, or is
merely flying to another target. The Bayesian network can provide the
probability of either subplan, conditioned on whatever behavior has been
observed so far. These probabilities, along with the different implications of the
two cases, can aid the pilot in choosing the correct course of action.

4. Probabilistic State-Dependent Grammars

One drawback of using PCFGs for plan recognition (as well as most other extant
approaches), is that they require maintaining the entire history of observations
as context for subsequent plan recognition queries. Whereas this is unavoidable
in general, it may well be possible to employ graphical modeling techniques to
exploit whatever independence exists to support practical inference.

Our investigations culminated in the development of probabilistic state-dependent
grammars (PSDGs), a hybrid representation based on PCFGs augmented with
dependencies of production probabilities on underlying states (Pynadath and
Wellman 2000). The state evolution is defined by transition probabilities,
represented in dynamic Bayesian networks (DBNs) (Kjeerulff 1992). Although
any PSDG can be represented as a PCFG, the PSDG representation may be
exponentially more compact when the state space is highly structured.




4.1 Example: Highway Traffic

Consider the following PSDG, representing a simplified model of driving plans.

0) Drive —  StayDrive  (py(q) =---)

1) Drive —  Left Drive (p,(g) = {0 if Lane(g) = left-lane ...)
2) Drive —  Right Drive  (py(9))

3) Drive — PassDrive (p,(9))

4) Drive —  Exit (Pd9)

5) Drive —  Left Right (Ps(9))

6) Drive —  Right Left (Ps(9)

The state includes the observable features of the driver’s position and speed, as
well as the position and speeds of other cars on the highway. The state also
includes aspects of the driver’s mental state, such as the agent’s preferences
about driving speed, distance from other cars, intended exit, etc. We can explore
the generation of the parse tree of Figure 3 (corresponding to one possible
instance of the agent's plan generation and execution) to illustrate the
interactions between the plan and state models. The pictures across the bottom
of the diagram represents the observable portion of state at that point of the
parse tree. The darker rectangle (blue if reading in color) is the driver whose
planning process we are trying to recognize. The lighter rectangles (green) are
the other cars on the highway that the driver of interest must consider when
planning.

Dri've
Pass
| Right Left
o 1" lel 1

Figure 3: A parse tree for the simple highway example.

In this scenario, the driver passes two cars, both times on the right. The PSDG
formalism makes it easy to specify how the driver’s decision to pass, and on
which side, may depend on situational factors. This is accomplished by




conditioning the production probabilities in the grammar on the underlying
state. For example, the decision to pass might be based on desired speed and
speed of the car ahead, whereas choice of side might depend on the presence of
cars in other lanes.

Our implemented traffic PSDG has 14 nonterminal symbols (plans), 7 terminal
symbols (actions), and 15 state features (with the mean state space size being 431
elements). Three of these state features correspond to aspects of the driver’s
mental state (preferred speed, intended exit, aggressiveness); the rest of the state
features are completely observable. There are a total of 40 productions with a
mean length of two symbols. We also implemented a PSDG representation for
an air combat domain based on an existing specification (Tambe and
Rosenbloom 1996) using SOAR productions (Laird et al. 1987).

4.2 PSDG Inference

Although we can perform inference on a given PSDG with a finite state space by
generating the corresponding PCFG and using PCFG inference algorithms, the
explosion in the size of the symbol space can lead to prohibitive costs. In
addition, existing PCFG algorithms cannot handle most plan-recognition queries.

We can potentially perform inference by generating a DBN representation of a
PSDG distribution. The definition of the PSDG language model supports an
automatic DBN generation algorithm. The resulting DBN supports queries over
the symbol, production, and state random variables. Unfortunately, the
complexity of DBN inference is likely to be impractical for most PSDGs, where
the belief state must represent the entire joint distribution over all possible
combinations of state and parse tree branches. For instance, for the complete
PSDG representation of the traffic domain, the DBN belief state would have
more than 10% entries.

Instead, we have designed and implemented inference algorithms that exploit
the particular structure of the PSDG model to answer a set of queries more
restricted than that provided by DBNS. These algorithms use a compact belief
state to answer queries based on observations of the state variables. At time ¢,
the recognizer observes some or perhaps all of the features of the state, Q. Based
on this evidence, the algorithm computes posterior probabilities over the
individual state elements, as well as posterior probabilities over the possible
plans and productions that the agent executed at time £ — 1. The algorithm then
computes the posterior probabilities over the plans and productions that the
agent will select at time ¢, as well as updating the recognizer’s belief state.!

! A pseudocode description of the algorithm is available online at
http:/ /www.isi.edu/~pynadath/Research/PSDG. Both the pseudocode and proofs of
correctness are presented in the dissertation (Pynadath 1999).




5. Conclusion

In this report, we have documented a series of advances in techniques for plan

recognition under uncertainty. Starting from a general Bayesian framework, we
explored the use of graphical models as well as existing grammatical formalisms.

We combined the advantages of both approaches in a method for generating
Bayesian networks from PCFGs. We then improved on that approach by
defining a grammatical formalism—probabilistic state-dependent
grammars—conducive for modeling plan recognition domains. We then

developed inference algorithms designed to support plan recognition queries on

PSDGs, and demonstrated their applicability in highway traffic and air combat
domains.
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